RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025 Number 3, Pages 17–22 (Mi vmumm4685)

Mathematics

Invariants of pseudo-Euclidean Euler top with noncompact layers

N. A. Belousova, V. A. Kibkaloab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics

Abstract: A pseudo-Euclidean analogue of the Euler top is considered such that the middle principal moment of inertia corresponds to the negative axis of the space. The leaves of the Liouville foliation are of direct product type, one of whose factors is always non-compact or empty. For arbitrary values of the Casimir functions, analogues of Fomenko invariants are calculated on non-singular isoenergy or isointegral surfaces.

Key words: integrable system, rigid body dynamics, pseudo-Euclidean space, Euler top, topological invariant, singularity.

UDC: 517.938.5

Received: 29.02.2024

DOI: 10.55959/MSU0579-9368-1-66-3-3


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2025, 80:3, 167–172

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026