RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024 Number 4, Pages 69–73 (Mi vmumm4623)

Short notes

Estimates of modified (Eucledean) Gromov–Hausdorff distance

O. S. Malysheva

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The Gromov–Hausdorff distance $d_{GH}(X,Y)$ is well known to be bounded above and below by the diameters of the sets $X$ and $Y$. In this paper, we study the modified Gromov–Hausdorff distance and the orbits of the action of the isometry group's subgroup in Euclidean spaces. It turns out that there are similar restrictions for it, but by the Chebyshev radii of the representatives of the orbits. As a consequence, we give an estimate for the distance between the Chebyshev centers of compact sets for their optimal alignment.

Key words: Euclidean Gromov–Hausdorff distance, Chebyshev radius, optimal positions of compacts.

UDC: 515.124.4+514.177.2

Received: 28.06.2023

DOI: 10.55959/MSU0579-9368-1-65-4-11


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2024, 79:4, 201–205

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026