RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023 Number 4, Pages 64–68 (Mi vmumm4558)

This article is cited in 5 papers

Short notes

Lagrange variational principle in the micropolar elasticity theory for non-isothermal processes

A. V. Romanov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In this paper, a variational principle of Lagrange, the Ritz method and piecewise polynomial serendipity shape functions are used to obtain a stiffness matrix and a system of linear algebraic equations in the micropolar theory of elasticity for anisotropic, isotropic and centrally symmetric material in case of a non isothermal process.

Key words: micropolar continuum, Cosserat continuum, theory of asymmetric elasticity, variational principle, rotation gradient tensor, couple stress tensor, finite element method, stiffness matrix, non isothermal process.

UDC: 539.3+531.53+532.23

Received: 23.03.2023

DOI: 10.55959/MSU0579-9368-1-64-4-12


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2023, 78:4, 114–118

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026