RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023 Number 4, Pages 57–60 (Mi vmumm4556)

Short notes

Reconstruction of the Schrödinger operator with a singular potential on half-line by its prescribed essential spectrum

G. A. Agafonkinab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics

Abstract: Singular Schrodinger operators on $L^2([0,+\infty))$ with the potential of the form $\sum_{k=1}^{+\infty}a_k\delta_{x_k}$, where $x_k~{>}~0$ and $a_k~{\in}~\mathbb{R}$, are considered. It is constructively proved that every closed semibounded set $S\subset\mathbb{R}$ can be the essential spectrum of such operator.

Key words: Schrödinger operator, essential spectrum, Weyl theorem.

UDC: 511

Received: 26.10.2022

DOI: 10.55959/MSU0579-9368-1-64-4-10


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2023, 78:4, 203–206

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026