RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023 Number 3, Pages 23–27 (Mi vmumm4536)

Mathematics

Gromov–Hausdorff distance between sets of vertices of regular polygons inscribed into a circle

T. K. Talipov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We calculate the Gromov–Hausdorff distance between vertex sets of regular polygons endowed with the round metric. We give a full answer for the case of $n$- and $m$-gons with $m$ divisible by $n$. We also calculate all distances to $2$-gons and $3$-gons.

Key words: metric geometry, Gromov–Hausdorff distance, metric space.

UDC: 511

Received: 14.10.2022

DOI: 10.55959/MSU0579-9368-1-64-3-4


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2023, 78:3, 130–135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026