RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023 Number 1, Pages 14–19 (Mi vmumm4512)

Mathematics

Steiner points in $l_\infty^2$ spaсe

B. B. Bednovab

a Bauman Moscow State Technical University
b I. M. Sechenov First Moscow State Medical University

Abstract: It is proved that for a given set of pairwise distinct points $x_1, \dots, x_n$ the sum of the distances from these points to their Steiner point in $l_\infty^2$ space is equal to the maximum of the sum of lengths of $[\frac{n}{2}] - 1$ separate segments and either a semi-perimeter of a triangle, or another segment with vertices in this set. The case of coincident points among $x_1, \dots, x_n$ is also studied.

Key words: Manhattan plane, Steiner point.

UDC: 517.982.256 + 515.124.4

Received: 31.10.2021

DOI: 10.55959/MSU0579-9368-1-2023-1-14-19


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2023, 78:1, 15–20

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026