RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022 Number 3, Pages 21–25 (Mi vmumm4471)

This article is cited in 3 papers

Mathematics

The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into $k$-dimensional affine subspaces

I. P. Baksova, Yu. V. Tarannikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The bounds on the number of partitions of the space ${\mathbf F}_2^m$ into affine subspaces of dimension $k$ are presented in the paper. Apart from their immediate interest, these bounds are important for estimating the number of bent functions generated by some constructions.

Key words: affine subspaces, partitions of a space, bounds, bent functions.

UDC: 519.115.4

Received: 12.01.2022


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2022, 77:3, 131–135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026