RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022 Number 2, Pages 76–79 (Mi vmumm4466)

Short notes

Embedding of the atomic theory of subsets of free semigroups to the atomic theory of subsets of free monoids

B. O. Konstantinovskiy, F. D. Kholodilov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In this paper, we consider atomic formulas constructed from the binary predicate symbol $\subseteq$ and binary function symbols $\backslash$, $/$, $\cup$, and $\cap$. For $X$ and $Y$ from the powerset of a free semigroup, $X/Y$ denotes the set consisting of elements whose product with any element of $Y$ ( multiplying on the right) belongs to $X$. Similarly, one defines $Y \backslash X$ (multiplying on the left). We prove that every atomic formula that is true in every free semigroup powerset interpretation is also true in every free monoid powerset interpretation.

Key words: Lambek calculus, Lambek calculus models, language models, free semigroup, free monoid.

UDC: 511

Received: 09.04.2021


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2022, 77:2, 108–111

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026