RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013 Number 6, Pages 19–24 (Mi vmumm446)

Mathematics

$\Delta$-graphs of polytopes in Bruns and Gubeladze $K$-theory

M. V. Prikhod'ko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: W. Bruns and J. Gubeladze introduced a new variant of algebraic $K$-theory, where \linebreak $K$-groups are additionally parametrized by polytopes of some type. In this paper we propose a notion of stable $E$-equivalence which can be used to calculate $K$-groups for high-dimensional polytopes. Polytopes which are stable $E$-equivalent have similar inner structures and isomorphic $K$-groups. In addition, for each polytope we define a $\Delta$-graph which is an oriented graph being invariant under a stable $E$-equivalence.

Key words: algebraic $K$-theory, balanced polytopes, $E$-equivalence.

UDC: 000

Received: 26.09.2012


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2013, 68:6, 281–285

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026