RUS
ENG
Full version
JOURNALS
// Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
// Archive
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.,
2013
Number 6,
Pages
14–19
(Mi vmumm445)
This article is cited in
1
paper
Mathematics
Sets with not more than two-valued metric projection on planes
A. A. Flerov
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
For a set
$M$
in the Euclidean plane
$\mathbb{R}^2$
, we prove that if any point
$x\in\mathbb{R}^2$
has one or two closest points in
$M$
, then each point of the convex hull of
$M$
lies in the segment with endpoints in
$M$
.
Key words:
metric projection, Bunt theorem.
UDC:
517.982.256
Received:
31.08.2012
Fulltext:
PDF file (400 kB)
References
Cited by
English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2013,
68
:6,
275–280
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026