RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022 Number 1, Pages 19–25 (Mi vmumm4446)

Mathematics

Robust utility maximization in terms of supermartingale measures

A. A. Farvazova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We consider a dual description of the optimal value of robust utility in the abstract model of the financial market $(\Omega,\mathscr{F},\mathrm{P},\mathscr{A}(x))$, where $\mathscr{A}(x)=x\mathscr{A}$, $x\geq 0$, is the set of the investor's terminal capitals corresponding to strategies with the initial capital $x$. The main result of the paper addresses the question of the transition in the definition of the dual problem from the polar of the set $\mathscr{A}$ to a narrower set of limit values of supermartingale densities.

Key words: utility maximization, robust utility, supermartingale measure.

UDC: 519.21

Received: 22.01.2021


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2022, 77:6, 20–26

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026