RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021 Number 6, Pages 48–51 (Mi vmumm4439)

Short notes

Lower bound of circuit complexity of parity function in a basis of unbounded fan-in

Yu. A. Kombarov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The paper is focused on realization of parity functions by circuits in the basis $U_\infty$. This basis contains all functions of the form $x_1^{\sigma_1}\&\ldots\& x_k^{\sigma_k}$. It is proved that every circuit over $U_\infty$ computing a parity function of $n$ variables contains at least $2\frac{1}{9}n+\Theta(1)$ gates.

Key words: Boolean circuits, circuit complexity, parity function, minimal circuit.

UDC: 519.95

Received: 21.10.2020


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2021, 76:6, 266–270

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026