RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021 Number 4, Pages 17–22 (Mi vmumm4411)

This article is cited in 1 paper

Mathematics

An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$

G. V. Kalacheva, S. Yu. Sadov

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The operator of convolution with a complex-valued integrable kernel in the space of integrable functions is considered; a necessary and sufficient condition for the existence of a maximizer, i.e., a norm one function that maximizes the norm of convolution, is given. Analysis of measurable solutions of Pexider's functional equation defined on subsets of positive measure in $\mathbb{R}^n$ plays the key role.

Key words: convolution operator, $L_1$ space, maximizer, Pexider's equation, Cauchy's functional equation, measurable solution.

UDC: 517.51, 517.965

Received: 13.12.2019


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2021, 76:4, 161–167

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026