RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021 Number 2, Pages 39–43 (Mi vmumm4391)

Short notes

Frames as continuous redundant codes

Al. R. Valiullin, Ar. R. Valiullin, V. V. Galatenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We consider expansions in a finite frame as a continuous linear redundant coding and show that coding of an element from an $N$-dimensional space with a frame consisting of $(N+M)$ elements provides detection of up to $M$ errors and correction of up to $\left\lfloor\frac{M}{2}\right\rfloor$ errors. We also note that these results are sharp. The presented results are direct continuous analogues of classical statements from the discrete coding theory.

Key words: finite frame, codes, error-correcting coding, error-detecting coding, continuous coding, harmonic frames.

UDC: 517.518.3+519.725

Received: 15.06.2020


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2021, 76:2, 73–77

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026