RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020 Number 4, Pages 29–37 (Mi vmumm4338)

This article is cited in 1 paper

Mechanics

Dynamic deformation of a thin plastic layer between converging rigid cylinders

R. R. Shabaykin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: On the basis of asymptotic analysis with a natural small geometric parameter $\alpha$ without any static or kinematic hypotheses, the dynamic solutions of the Prandtl analog for the case of a cylindrical layer, including the terms with $\alpha^{-1}$ and $\alpha^{0}$ for various cylinder configurations, are obtained and analyzed.

Key words: ideal rigid-plastic body, Prandtl's problem, quasistatics, compression, spreading, asymptotic expansions, axisymmetric problem, Euler's number, dynamics.

UDC: 539

Received: 15.10.2018


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2020, 75:4, 87–95

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026