RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017 Number 1, Pages 25–32 (Mi vmumm40)

This article is cited in 2 papers

Mathematics

Integration of Banach-valued functions and Haar series with Banach-valued coefficients

V. A. Skvortsov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: It is proved that for any Banach space each everywhere convergent Haar series with coefficients from this space is the Fourier–Haar series in the sense of a Henstock type integral with respect to dyadic derivation basis. At the same time convergence of Fourier–Henstock–Haar series Banach-space-valued functions is essentially dependent on properties of a space.

Key words: Haar series, Walsh series, dyadic derivation basis, Henstock integral, Pettis integral, Banach-space-valued functions, Orlicz property.

UDC: 517.518.43

Received: 27.04.2016


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2017, 72:1, 24–30

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026