RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1967 Number 6, Pages 100–108 (Mi vmumm3611)

The central limit theorem for random motions of Euclidean space

V. N. Tutubalin


Abstract: Each element $g$ of the group $G$ of all Euclidean motions in $R^3$ can be represented as $g=au$, where $a$ is translation and $u$ is rotation. Consider a sequence $g_1,g_2,\dots, g_n,\dots$ of random independent identically distributed elements of $G$ and their product
$$ g(n)=g_1g_2\dots g_n=a(n)u(n). $$
With natural restrictions the distribution of $\frac1{\sqrt n}a(n)$ tends to a normal distribution as $n\to\infty$, while the distribution of $u(n)$ tends to the normed Haar measure on the group of rotations.

UDC: 517.5

Received: 03.03.1967



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026