RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982 Number 6, Pages 31–37 (Mi vmumm3585)

This article is cited in 1 paper

Mathematics

Varieties of representations of finite-dimensional algebras in prime algebras

Yu. P. Razmyslov


Abstract: We prove that the pairs $(A_1,\mathfrak{G}_1)$ and $(A_2,\mathfrak{G}_2)$ have the same identical relations if and only if for some field extension $K_1\supset K$ the pairs $(K_1\otimes_K A_1,K_1\otimes_K\mathfrak{G}_1)$ and $(K_1\otimes_K A_2,K_1\otimes_K\mathfrak{G}_2)$ are semilinear isomorphic. Here $\mathfrak{G}_1$, $\mathfrak{G}_2$ are some finite dimensional $K$-algebras of signature $\Omega'$ and $A_1$, $A_2$ are some central prime algebras of signature $\Omega$.

UDC: 519.4

Received: 12.02.1982



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026