RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982 Number 5, Pages 32–35 (Mi vmumm3562)

This article is cited in 1 paper

Mathematics

The mean value theorem for harmonic functions in a domain of Hilbert space

A. A. Belyaev


Abstract: We prove that the value of any harmonic function whose domain is an open set in the Hilbert space in a given point $x$ is equal to the mean value of the function with respect to a measure given on a ball with the centre $x$. From this we derive a theorem of Liouville that says that a bounded harmonic function defined in all points of a Hilbert space is constant.

UDC: 517.948

Received: 23.11.1981



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026