RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018 Number 3, Pages 57–60 (Mi vmumm34)

Short notes

The Lindelöff number functional spaces over monolithic compacta

D. P. Baturova, E. A. Reznichenkob

a Orel State University
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let $X$ be a compactum, $\tau$ be an infinite cardinal, and $t(X)\le\tau$. In this case, $l(C_p(X))\le 2^\tau$. If $X$ is $\tau$-monolithic, then $l(C_p(X))\le \tau^+$. In addition, if $X$ is zero-dimensional and there are no $\tau ^+$-Aronszajn trees, then $l(C_p(X))\le \tau$.

Key words: function space, Lindelöf number, tightness, monolithic compactum, Aronszajn tree.

UDC: 515.12

Received: 14.12.2016


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2018, 73:3, 116–119

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026