RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014 Number 1, Pages 50–53 (Mi vmumm296)

This article is cited in 5 papers

Short notes

Primary differential nil-algebras do exist

G. A. Pogudin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We construct a monomorphism from differential algebra $k\{x\} / [x^m]$ to Grassmann algebra endowed with the structure of differential algebra. Using this monomorphism, we prove the primality of the $k\{x\} / [x^m]$ and its algebra of differential polynomials, solve the so-called Ritt problem and give a new proof of integrality of the ideal $[x^m]$.

Key words: differential algebra, algebra of differential polynomials, Ritt problem, prime radical.

UDC: 512.628.2+512.552.12

Received: 12.11.2012


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2014, 69:1, 33–36

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026