RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015 Number 6, Pages 23–28 (Mi vmumm278)

Mathematics

Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball

F. A. Ivlev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The problem of estimation of the distance between two bodies of volume $\varepsilon$ located inside an $n$-dimensional body $B$ of unit volume where $n \to \infty$ is considered. In some cases such distances are bounded by a function of $\varepsilon$ not dependent on $n$. The cases when $B$ is a sphere or a cube are considered.

Key words: minimal surface, multidimensional convex geometry, central limit theorems.

UDC: 514.17+514.174

Received: 08.12.2014


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2015, 70:6, 261–266

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026