RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015 Number 6, Pages 9–14 (Mi vmumm276)

This article is cited in 1 paper

Mathematics

Generalized separants of differential polynomials

M. A. Limonov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let $f\in K\{y\}$ be an element of the ring of differential polynomials in one differential variable $y$ with one differential operator $\delta$. For any variable $y_k$, the polynomial $g=\delta^n(f)$ can be represented in the form $g=A_ky_k+g_0$, where $g_0$ does not depend on $y_k$. If $y_k$ is the leader of $g$, then $A_k$ is a separant of the polynomial $f$. A formula for $A_k$ is obtained for sufficiently large numbers $n$ and $k$ and some applications of this formula are presented.

Key words: differential polynomial, separant, generalized separant, quasilinear polynomial.

UDC: 512.628.2

Received: 23.06.2014


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2015, 70:6, 248–252

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026