RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015 Number 4, Pages 55–57 (Mi vmumm254)

Short notes

On a class of oscillating integrals

M. Sh. Shikhsadilov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The following result is proved in the paper: if for some real $A>0$ and some natural number $n>1$ for all $x$ from $[0,1]$ we have the inequality $|f^{(n)}(x)|\geq A,$ then the following estimate is valid:
$$ |I|=\left|\int_0^1\limits\rho(f(x))~dx\right|\leq\min{\{1;4nA^{-1/n}\}}, $$
where $\rho(t)=0,5-\{t\}.$

Key words: “saw-tooth” function, trigonometric integrals.

UDC: 511

Received: 28.11.2014


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2015, 70:4, 191–192

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026