RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015 Number 3, Pages 29–34 (Mi vmumm236)

This article is cited in 1 paper

Mathematics

The $n$-antiproximinal sets

B. B. Bednov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The notion of $n$-antiproximinal set in a Banach space is defined. The existence of convex closed $n$-antiproximinal sets in the spaces $C$ and $L_1$ is studied.

Key words: antiproximinal set, Banach space.

UDC: 517.982.256

Received: 30.04.2014


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2015, 70:3, 130–135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026