RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015 Number 2, Pages 59–62 (Mi vmumm227)

Short notes

Estimate of an arithmetic sum with multiplicative coefficients

M. Sh. Shikhsadilov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The class $\mathcal{F}$ consisting of all multiplicative functions $f$ satisfying the inequality $|f(p)|\leq A$ for some constant $A\geq 1$ and all primes $p$ and $\sum_{n=1}^N |f(n)|^2\leq A^2N$ is considered. It is proved that for any real irrational algebraic $\alpha$ and for all natural numbers $k$ and $N$ the following estimate holds uniformly over all multiplicative functions $f$ from $\mathcal{F}$:
$$ S(\alpha)=\sum_{n=1}^Nf(n)\rho(n\alpha)\ll_A\frac{N}{\ln N}, $$
where $\rho(t)=0,5-\{t\}.$

Key words: multiplicative function, Vinogradov's method.

UDC: 511

Received: 27.06.2014


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2015, 70:2, 99–101

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026