RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015 Number 2, Pages 3–9 (Mi vmumm215)

This article is cited in 1 paper

Mathematics

Complex Hamiltonian systems on $\mathbb{C^2}$ with Hamiltonian function of low Laurent degree

N. N. Martynchuk

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study complex Hamiltonian systems on $\mathbb C\times(\mathbb C\setminus\{0\})$ with standard symplectic structure $\omega_{\mathbb C}=dz\wedge dw$ and Hamiltonian function $f=a z^2+b/w+P_n(w)$, where $P_n(w)$ is a polynomial of degree $n$, the numbers $a,b\in\mathbb C$ and $ab\ne0$. For some natural classes of these $\mathbb C$-Hamiltonian systems we study an equivalence relation in the Hamiltonian sense and determine the topology of the corresponding quotient space. We also prove that for $\mathbb C$-Hamiltonian systems with Hamiltonian function $f=a z^2+b/w+P_n(w)$, where $a b\ne0,n\ge0$, the bifurcation complex is homeomorphic to a two-dimensional plane.

Key words: symplectic structure, Hamiltonian system, Hamiltonian equivalence, bifurcation complex.

UDC: 511

Received: 25.09.2013


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2015, 70:2, 53–59

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026