RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015 Number 1, Pages 62–65 (Mi vmumm211)

This article is cited in 6 papers

Short notes

Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds

D. A. Fedoseev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Bifurcation diagrams for natural integrable Hamiltonian systems on Bertrand manifolds (i.e., on configuration spaces of one inverse problem of dynamics) are constructed. Some properties of the corresponding Liuoville foliations are studied, namely, the compactness and the number of foliation components in the preimage under momentum map.

Key words: Bertrand's Riemannian manifold, surface of revolution, Hamiltonian systems, bifurcation diagram.

UDC: 511

Received: 22.01.2014


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2015, 70:1, 44–47

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026