RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016 Number 4, Pages 64–65 (Mi vmumm170)

Short notes

The uniformly normal spaces

A. V. Bogomolov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A topological space $X$ is uniformly normal if the family $\mathcal{ U}$ of all symmetric neighborhoods of the diagonal $\Delta \subset X\times X$ forms a uniformity on $X$. A neighborhood of the diagonal is any subset whose interior contains the diagonal. It is proved that the $\Sigma$-product of Lindelof $p$-spaces of countable tightness is uniformly normal.

Key words: uniform normality, uniformity, $\Sigma$-product, countable tightness, $F_\sigma$-$\delta$-normality.

UDC: 515.12

Received: 18.05.2015


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2016, 71:4, 170–171

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026