RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016 Number 2, Pages 51–52 (Mi vmumm138)

Short notes

Complexity of linear and majority functions in the basis of antichain functions

O. V. Podolskaya

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The complexity circuits of Boolean functions is studied in a basis consisting of all characteristic functions of antichains over the Boolean cube. It is established that the circuit complexity of an $n$-variable parity function is $\left\lfloor \frac{n+1}{2}\right\rfloor$ and the complexity of its negation equals the complexity of the $n$-variable majority function which is $\left\lceil \frac{n+1}{2} \right\rceil$.

Key words: antichain function, circuit complexity, parity function, majority function.

UDC: 519.7

Received: 25.05.2015


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2016, 71:2, 82–83

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026