RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016 Number 2, Pages 40–44 (Mi vmumm135)

This article is cited in 2 papers

Short notes

The mapping taking three points of a Banach space to their Steiner point

K. V. Chesnokova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A mapping $\mathrm{St}$ sending any three points $a, b, c$ of a Banach space $X$ into a set $\mathrm{St}(a, b, c)$ of their medians and a corresponding operator $P_D$ of metric projection of a space $X \times X \times X$ onto its diagonal subspace $D=\{(x, x, x) \colon x \in X\}$, $P_D(a, b, c)=\{(s, s, s) \colon s \in \mathrm{St}(a, b, c)\}$, are considered. The linearity coefficient of arbitrary selection from $P_D$ is estimated, depending on different properties of the space $X$. As a corollary, estimates for the Lipschitz constant of arbitrary selection from the mapping $\mathrm{St}$ are obtained.

Key words: the linearity coefficient of metric projections, median.

UDC: 517.982.256+515.124.4

Received: 04.03.2015


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2016, 71:2, 71–74

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026