RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016 Number 2, Pages 12–18 (Mi vmumm130)

This article is cited in 1 paper

Mathematics

Revision of asymptotic behavior of the complexity of word assembly by concatenation circuits

V. V. Kocherginab, D. V. Kochergina

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Lomonosov Moscow State University, Bogoliubov Institute for Theoretical Problems of Microphysics

Abstract: The problem of complexity of word assembly is studied. The complexity of a word means the minimal number of concatenation operations sufficient to obtain this word in the basis of one-letter words over a finite alphabet $A$ (repeated use of obtained words is permitted). Let $L_A^c(n)$ be the maximum complexity of words of length $n$ over a finite alphabet $A$. In this paper we prove that $ L_A^c(n) = \frac n {\log_{|A|} n} \left( 1 + (2+o(1)) \frac {\log_2 \log_2 n}{\log_2 n} \right). $

Key words: concatenation circuits, word chains, circuits complexity, Shannon function.

UDC: 519.7

Received: 29.05.2015


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2016, 71:2, 55–60

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026