RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016 Number 1, Pages 60–61 (Mi vmumm125)

This article is cited in 6 papers

Short notes

Complete rational arithmetic sums

V. N. Chubarikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let $q>1$ be an integer, $f(x)=a_nx^n+\ldots +a_1x+a_0$ be a polynomial with the integer coefficients, and $(a_n,\ldots ,a_1,q)=1.$ Then is valid the estimation
$$\left|S\left(\frac{f(x)}{q}\right)\right|=\left|\sum_{x=1}^q\rho\left(\frac{f(x)}q\right)\right|\ll q^{1-1/n}, $$
where $\rho(t)=0,5-\{t\}.$

Key words: “the saw-tooth” function, the Bernuolli's polynomials, the complete rational arithmetical sums.

UDC: 511

Received: 27.03.2015


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2016, 71:1, 43–44

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026