RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016 Number 1, Pages 40–44 (Mi vmumm120)

This article is cited in 3 papers

Short notes

The Bertrand’s manifolds with equators

E. A. Kudryavtseva, D. A. Fedoseev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Natural mechanical systems describing the motion of a particle on a two-dimensional Riemannian manifold of revolution in the field of a central smooth potential are studied in the paper. A complete classification of such Riemannian manifolds and potentials on them possessing the strengthened Bertrand property, i.e., any orbit not contained in any meridian is closed, is obtained.

Key words: Bertrand's Riemannian manifold, surface of revolution, equator, Tannery's manifold, the Maupertuis principle.

UDC: 514.853

Received: 24.06.2014


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2016, 71:1, 23–26

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026