Abstract:
This paper is devoted to the acceleration of the parallel solution of three-dimensional boundary value problems by the computational domain decomposition method into subdomains that are conjugated without overlapping. The decomposition is performed by a uniform parallelepipedal macrogrid. In each subdomain and on the interface, some structured subgrids are constructed. The union of these subgrids forms a quasi-structured grid on which the problem is solved. The parallelization is carried out using the MPI-technology. We propose and experimentally study the acceleration algorithm for an external iterative process on subdomains to solve a system of linear algebraic equations approximating the Poincare-Steklov equation on the interface. A number of numerical experiments are carried out on various quasi-structured grids and with various parameters of computational algorithms showing the acceleration of computations.
Keywords:boundary value problems, parallelization, quasi-structured grids, iterative process, initial approximation.