Abstract:
A modified linearized steepest descent method with variable weight factors is proposed to solve three-dimensional structural inverse gravimetry and magnetometry problems of finding the interfaces between constant density or magnetization layers in a multilayer medium. A linearized conjugate gradient method and its modified version with weight factors for solving the gravimetry and magnetometry problems in a multilayer medium is constructed. On the basis of the modified gradient-type methods, a number of efficient parallel algorithms are numerically implemented on an Intel multi-core processor and NVIDIA GPUs. The developed parallel iterative algorithms are compared for a model problem in terms of the relative error, the number of iterations, and the execution time.
Keywords:inverse gravimetry and magnetometry problems, parallel algorithms, gradient-type methods, multi-core and graphics processors.