RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2025 Volume 27, Number 3, Pages 75–81 (Mi vmj970)

On intersection of abelian and minimal nonabelian subgroups in finite groups

V. I. Zenkovab

a N. N. Krasovskii Institute of Mathematics and Mechanics UB RAS, 16 S. Kovalevskaya St., Yekaterinburg 620108, Russia
b Ural Federal University, 19 Mira St., Ekaterinburg 620062, Russia

Abstract: Let $G$ be a finite group with subgroups $A$ and $B$. Denote by $M=M_G(A,B)$ (respectively, $m=m_G(A,B)$) the set of all minimal by inclusion (respectively, by order) intersections of the form $A\cap B^g$, where $g\in G$. Put $\min_G(A,B)=\langle m\rangle$ and ${\mathrm Min}_G(A,B)=\langle M\rangle$. In 1994 we proved that if $A$ and $B$ are abelian subgroups, then ${\mathrm Min}_G(A,B)\le F(G)$. In the present paper, we give other proof of this result. Futhermore, we construct a finite group $G$ such that it contan an abelian subgroup $A$, a minimal non-abelian subgroup $B$ and elements $g_1$ and $g_2$ with $A\cap B^{g_1}\le F(G)$, $A\cap B^{g_2}\not\le F(G)$, $|A\cap B^{g_1}|=|A\cap B^{g_2}|$ and $A\cap B^{g_1}$, $ A\cap B^{g_2}\in\min_G(A,B)$. We provide an example of a group $G$ such that $g_1, g_2\in G$ $A\cap B^{g_1}$, $ A\cap B^{g_2}\in{\mathrm Min}_G(A,B)$, $A\cap B^{g_1}\le F(G)$, and $A\cap B^{g_2}\not\le F(G)$. Moreover, we show that there exists a group $G$ with nilpotent subgroups $A$ and $B$ such that $m\subset M$ and $\min_G(A,B) < {\mathrm Min}_G(A,B)$.

Key words: finite group, abelian subgroup, intersection of subgroups.

UDC: 512.542

MSC: 20D10, 20D60, 05C25

Received: 19.05.2025

DOI: 10.46698/h4871-7742-3837-a



© Steklov Math. Inst. of RAS, 2026