Positive isometries of Orlicz–Kantorovich spaces
B. S. Zakirova,
V. I. Chilinb a Tashkent State Transport University, 1 Temiryulchilar St., Tashkent 100167, Uzbekistan
b National University of Uzbekistan, Vuzgorodok, Tashkent 100174, Uzbekistan
Abstract:
Let
$B$ be a complete Boolean algebra,
$Q(B)$ the Stone compact of
$B$, and let
$C_\infty (Q(B))$ be the commutative unital algebra of all continuous functions
$x: Q(B) \to [-\infty, +\infty]$, assuming possibly the values
$\pm\infty$ on nowhere-dense subsets of
$Q(B)$. We consider the Orlicz–Kantorovich spaces ${(L_{\Phi}(B,m), \|\cdot\|_{\Phi})\subset C_\infty (Q(B))}$ with the Luxembourg norm associated with an Orlicz function
$\Phi$ and a vector-valued measure
$m$, with values in the algebra of real-valued measurable functions. It is shown, that in the case when
$\Phi$ satisfies the
$(\Delta_2)$-condition, the norm
$\|\cdot\|_{\Phi}$ is order continuous, that is,
$\|x_n\|_{\Phi}\downarrow \mathbf{0}$ for every sequence
$\{x_n\}\subset L_{\Phi}(B,m)$ with
$x_n \downarrow \mathbf{0}$. Moreover, in this case, the norm
$\|\cdot\|_{\Phi}$ is strictly monotone, that is, the conditions
$|x|\lneqq |y|$,
$x, y \in L_{\Phi}(B,m)$, imply
$\|x\|_{\Phi} \lneqq \|y\|_{\Phi}$. In addition, for positive elements
$x, y \in L_{\Phi}(B,m)$, the equality
$\|x+y\|_{\Phi}=\|x-y\|_{\Phi}$ is valid if and only if
$x\cdot y = 0$. Using these properties of the Luxembourg norm, we prove that for any positive linear isometry
$V: L_{\Phi}(B,m) \to L_{\Phi}(B,m)$ there exists an injective normal homomorphisms
$T : C_\infty (Q(B)) \to C_\infty (Q(B))$ and a positive element
$y \in L_{\Phi}(B,m)$ such that
$V(x ) =y\cdot T(x)$ for all
$x\in L_{\Phi}(B,m)$.
Key words:
the Banach–Kantorovich space, the Orlicz function, vector-valued measure, positive isometry, normal homomorphism.
UDC:
517.98
MSC: 46B04,
46B42,
46E30,
46G10 Received: 11.05.2022
Language: English
DOI:
10.46698/i8046-3247-2616-q