RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2021 Volume 23, Number 4, Pages 109–111 (Mi vmj790)

This article is cited in 1 paper

Notes

A note on periodic rings

P. V. Danchev

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev St., Sofia 1113, Bulgaria

Abstract: We obtain a new and non-trivial characterization of periodic rings (that are those rings $R$ for which, for each element $x$ in $R$, there exists two different integers $m$, $n$ strictly greater than $1$ with the property $x^m=x^n$) in terms of nilpotent elements which supplies recent results in this subject by Cui–Danchev published in (J. Algebra & Appl., 2020) and by Abyzov–Tapkin published in (J. Algebra & Appl., 2022). Concretely, we state and prove the slightly surprising fact that an arbitrary ring $R$ is periodic if, and only if, for every element $x$ from $R$, there are integers $m>1$ and $n>1$ with $m\not= n$ such that the difference $x^m-x^n$ is a nilpotent.

Key words: potent rings, periodic rings, nilpotent elements.

UDC: 512.55

MSC: 16U99, 16E50, 16W10, 13B99

Received: 09.06.2021

Language: English

DOI: 10.46698/q0369-3594-2531-z



© Steklov Math. Inst. of RAS, 2026