RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2021 Volume 23, Number 4, Pages 50–55 (Mi vmj784)

This article is cited in 1 paper

About subgroups rich in transvections

N. A. Dzhusoevaa, S. S. Ikaeva, V. A. Koibaevab

a North-Ossetian State University after K. L. Khetagurov, 46 Vatutina St., Vladikavkaz 362025, Russia
b Southern Mathematical Institute VSC RAS, 22 Markus St., Vladikavkaz 362027, Russia

Abstract: A subgroup $H$ of the full linear group $G=GL(n,R)$ of order $n$ over the ring $R$ is said to be rich in transvections if it contains elementary transvections $t_{ij}(\alpha) = e + \alpha e_{ij}$ at all positions $(i, j), \ i\neq j$ (for some $\alpha\in R$, $\alpha\neq 0$). This work is devoted to some questions associated with subgroups rich in transvections. It is known that if a subgroup $H$ contains a permutation matrix corresponding to a cycle of length $n$ and an elementary transvection of position $(i, j)$ such that $(i-j)$ and $n$ are mutually simple, then the subgroup $H$ is rich in transvections. In this note, it is proved that the condition of mutual simplicity of $(i-j)$ and $n$ is essential. We show that for $n=2k$, the cycle $\pi=(1\ 2\ \ldots n)$ and the elementary transvection $t_{31}(\alpha)$, $\alpha\neq 0$, the group $\langle (\pi), t_{31}(\alpha)\rangle$ generated by the elementary transvection $t_{31}(\alpha)$ and the permutation matrix (cycle) $(\pi)$ is not a subgroup rich in transvections.

Key words: subgroups rich in transvections, transvection, cycle.

UDC: 512.5

MSC: 20G15

Received: 10.08.2021

DOI: 10.46698/o2081-1390-1031-t



© Steklov Math. Inst. of RAS, 2026