RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2021 Volume 23, Number 3, Pages 80–90 (Mi vmj775)

This article is cited in 2 papers

Partial integral operators of Fredholm type on Kaplansky–Hilbert module over $L_0$

Yu. Kh. Eshkabilova, R. R. Kucharovb

a Karshi State University, 17 Kuchabag St., Karshi 180117, Uzbekistan
b National University of Uzbekistan, 4 University St., Tashkent 100174, Uzbekistan

Abstract: The article studies some characteristic properties of self-adjoint partially integral operators of Fredholm type in the Kaplansky–Hilbert module $L_{0}\left[L_{2}\left(\Omega_{1}\right)\right]$ over $L_{0}\left(\Omega_{2}\right)$. Some mathematical tools from the theory of Kaplansky–Hilbert module are used. In the Kaplansky–Hilbert module $L_{0}\left[L_{2}\left(\Omega_{1}\right)\right]$ over $ L_{0} \left (\Omega _ {2} \right)$ we consider the partially integral operator of Fredholm type $T_{1}$ ($ \Omega_{1} $ and $\Omega_{2} $ are closed bounded sets in $ {\mathbb R}^{\nu_{1}}$ and $ {\mathbb R}^{\nu_{2}},$ $\nu_{1}, \nu_{2} \in {\mathbb N} $, respectively). The existence of $ L_{0} \left (\Omega _ {2} \right) $ nonzero eigenvalues for any self-adjoint partially integral operator $T_{1}$ is proved; moreover, it is shown that $T_{1}$ has finite and countable number of real $L_{0}(\Omega_{2})$-eigenvalues. In the latter case, the sequence $ L_{0}(\Omega_{2})$-eigenvalues is order convergent to the zero function. It is also established that the operator $T_{1}$ admits an expansion into a series of $\nabla_{1}$-one-dimensional operators.

Key words: partial integral operator, Kaplansky–Hilbert module, $L_0$-eigenvalue.

UDC: 517.98

MSC: 45A05, 47A10, 47G10, 45P05, 45B05, 45C05

Received: 18.01.2021

Language: English

DOI: 10.46698/w5172-0182-0041-c



© Steklov Math. Inst. of RAS, 2026