Abstract:
Boolean valued analysis, the term coined by Takeuti, signifies a branch of functional analysis which uses a special technique of Boolean valued models of set theory. The fundamental result of Boolean valued analysis is Gordon’s Theorem stating that each internal field of reals of a Boolean valued model descends into a universally complete vector lattice. Thus, a remarkable opportunity opens up to expand and enrich the mathematical knowledge by translating information about the reals to the language of other branches of functional analysis. This is a brief overview of the mathematical events around the Gordon Theorem. The relationship between the Kantorovich's heuristic principle and Boolean valued transfer principle is also discussed.