RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2019 Volume 21, Number 1, Pages 62–73 (Mi vmj685)

Whitney decomposition, embedding theorems, and interpolation in weighted spaces of analytic functions

F. A. Shamoyana, E. V. Tasoevab

a Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
b Bryansk State University, 14 Bezhitskaya St., Bryansk 241036, Russia

Abstract: According to the classical Whitney theorem, each open set on the plane can be decomposed as a union of special squares whose interiors do not intersect. In the paper, using the properties of Whitney squares, a new concept is introduced. For each center $a_k$ of the Whitney square, there is a point $a_k^*\in \mathbb{C}\setminus G$ such that the distance to the boundary of the open set $G$ is between two constants, regardless of $k$. In particular, a necessary and sufficient condition for a sequence $(z_k)_1^{\infty}\subset G$ under which the operator $R(f)=(f(z_1),f(z_2),\ldots,f(z_n),\ldots)$ maps generalized Nevanlinna's flat classes in a domain $G$ of a complex plane in $l^p$.

Key words: Nevanlinna class, interpolation, Witny decomposition, Berman space.

UDC: 517.53

MSC: 30H15, 32A35

Received: 28.02.2018

DOI: 10.23671/VNC.2019.1.27735



© Steklov Math. Inst. of RAS, 2026