RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2018 Volume 20, Number 1, Pages 30–37 (Mi vmj640)

The uniqueness of the symmetric structure in ideals of compact operators

B. R. Aminov, V. I. Chilin

National University of Uzbekistan, Vuzgorodok, Tashkent, 100174, Uzbekistan

Abstract: Let $H$ be a separable infinite-dimensional complex Hilbert space, let $\mathcal L(H)$ be the $C^*$-algebra of bounded linear operators acting in $H$, and let $\mathcal K(H)$ be the two-sided ideal of compact linear operators in $\mathcal L(H)$. Let $(E, \|\cdot\|_E)$ be a symmetric sequence space, and let $\mathcal{C}_E:=\{ x \in \mathcal K(\mathcal H) : \{s_n(x)\}_{n=1}^\infty \in E\}$ be the proper two-sided ideal in $\mathcal L(H)$, where $\{s_n(x)\}_{n=1}^{\infty}$ are the singular values of a compact operator $x$. It is known that $\mathcal{C}_E$ is a Banach symmetric ideal with respect to the norm $ \|x\|_{\mathcal C_E}=\|\{s_n(x)\}_{n=1}^{\infty}\|_E$.
A symmetric ideal $\mathcal{C}_E$ is said to have a unique symmetric structure if $\mathcal{C}_E = \mathcal{C}_F$, that is $E =F$, modulo norm equivalence, whenever $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is isomorphic to another symmetric ideal $(\mathcal{C}_F, \|\cdot\|_{\mathcal{C}_F})$. At the Kent international conference on Banach space theory and its applications (Kent, Ohio, August 1979), A. Pelczynsky posted the following problem: (P)
Does every symmetric ideal have a unique symmetric structure?
This problem has positive solution for Schatten ideals $\mathcal{C}_p, \ 1\leq p < \infty$ (J. Arazy and J. Lindenstrauss, 1975). For arbitrary symmetric ideals problem (P) has not yet been solved. We consider a version of problem (P) replacing an isomorphism $U:(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E}) \to (\mathcal{C}_F, \|\cdot\|_{\mathcal{C}_F})$ by a positive linear surjective isometry. We show that if $F$ is a strongly symmetric sequence space, then every positive linear surjective isometry $U:(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E}) \to (\mathcal{C}_F, \|\cdot\|_{\mathcal{C}_F})$ is of the form $U(x) = u^*xu$, $x \in \mathcal C_E$, where $u \in \mathcal L(H)$ is a unitary or antiunitary operator. Using this description of positive linear surjective isometries, it is established that existence of such an isometry $U:\mathcal{C}_E \to \mathcal{C}_F$ implies that $(E, \|\cdot\|_E)=(F, \|\cdot\|_F)$.

Key words: symmetric ideal of compact operators, uniqueness of a symmetric structure, positive isometry.

UDC: 517.98

MSC: 46L52, 46B04

Received: 29.11.2017

Language: English

DOI: 10.23671/VNC.2018.1.11394



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026