RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 2009 Volume 151, Book 4, Pages 150–159 (Mi uzku772)

This article is cited in 1 paper

Infinitesimal Harmonic Transformations and Ricci Solitons

S. E. Stepanova, I. G. Shandraa, V. N. Shelepovab

a Finance Academy under the Government of the Russian Federation, Moscow
b Vladimir State Humanitarian University

Abstract: A Ricci soliton on a smooth manifold $M$ is a triple $(g_0,\xi,\lambda)$, where $g_0$ is a complete Riemannian metric, $\xi$ a vector field, and $\lambda$ a constant such that the Ricci tensor $\mathrm{Ric}_0$ of $g_0$ satisfies the equation $-2\mathrm{Ric}_0=L_\xi g_0+2\lambda g_0$. In the paper, we study the geometry of Ricci solitons in dependence of the properties of the vector field $\xi$. In particular, we prove that this vector field is a harmonic transformation.

Keywords: Riemannian manifold, infinitesimal harmonic transformation, Ricci soliton.

UDC: 514.764.2

Received: 25.08.2009



© Steklov Math. Inst. of RAS, 2026