RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 2009 Volume 151, Book 4, Pages 36–50 (Mi uzku764)

This article is cited in 2 papers

Holomorphic Tensor Fields and Linear Connections on a Second Order Tangent Bundle

F. R. Gainullina, V. V. Shuryginb

a "Itplus" Ltd.
b Chair of Geometry, Kazan State University

Abstract: The second order tangent bundle $T^2M$ of a smooth manifold $M$ carries a natural structure of a smooth manifold over the algebra $\mathbf R(\varepsilon^2)$ of truncated polynomials of degree 2. A section $\sigma$ of $T^2M$ induces an $\mathbf R(\varepsilon^2)$-smooth diffeomorphism $\Sigma\colon T^2M\to T^2M$. Conditions are obtained under which an $\mathbf R(\varepsilon^2)$-smooth tensor field and an $\mathbf R(\varepsilon^2)$-smooth linear connection on $T^2M$ can be transfered by a diffeomorphism of the form $\Sigma$, respectively, into the lift of a tensor field and the lift of a linear connection given on $M$.

Keywords: tangent bundle of second order, lift of a linear connection, lift of a tensor field, holomorphic connection, Lie derivative.

UDC: 514.76

Received: 30.07.2009



© Steklov Math. Inst. of RAS, 2026