RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 2005 Volume 147, Book 1, Pages 173–180 (Mi uzku490)

This article is cited in 1 paper

On principal directions of hyperquadric in Hilbert space

V. E. Fomin

Kazan State University

Abstract: A hypersurface in an $(n+1)$-dimensional Euclidean space has $n$ principal directions at each point: the eigenvectors of the Weingarten operator. And for a hypersurface in the infinite-dimensional Hilbert space, the Weingarten operator possibly has no eigenvectors. In the present paper we show that a hyperquadric in the Hilbert space determined by a positive definite quadratic form has principal directions under some additional assumptions. For a given direction we write an explicit expression for the point of the hyperquadric where this direction is principal. Also we give examples of these hyperquadrics.

UDC: 514.16

Received: 23.12.2004



© Steklov Math. Inst. of RAS, 2026