Abstract:
A numerical theory of lunar rotation has been developed. The mathematical model of the rotation of the Moon has been considered within the “main problem”. The equations of the rotation have been constructed on the basis of the Hamiltonian approach. The resulting differential equations have been solved using the 10th order Runge–Kutta method. The analysis of the obtained data has been carried out on the basis of residual differences (between the numerical and analytical solutions). As a result, we have found that the range of residual differences does not exceed in modulus 1.8 and 0.9 arcsec. by longitude and latitude, respectively. This relatively high divergence occurs due to the fact that the frequencies are close to the natural frequencies of the system.
Keywords:theory of physical libration of Moon, main problem, Hamilton's equations, Runge–Kutta method, residual differences, resonant frequencies.