RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki // Archive

Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2014 Volume 156, Book 3, Pages 49–54 (Mi uzku1264)

On finite generating subsets in monotone clones of many-valued logic

O. S. Dudakova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia

Abstract: The problem of existence of finite generating systems in maximal clones of monotone functions of many-valued logic is considered. It is proved that if a finite bounded poset contains $\sup(x,y)$ or $\inf(x,y)$ for every two elements $x$ and $y$, then the clones of all monotone functions in this poset is finitely generated.

Keywords: functions of many-valued logic, clones, maximal clones of monotone functions of $P_k$.

UDC: 519.716

Received: 31.07.2014



© Steklov Math. Inst. of RAS, 2026