RUS  ENG
Full version
JOURNALS // Proceedings of the Yerevan State University, series Physical and Mathematical Sciences // Archive

Proceedings of the YSU, Physical and Mathematical Sciences, 2009 Issue 3, Pages 10–21 (Mi uzeru230)

Mathematics

Dirichlet weight integral estimation to Dirichlet problem solution for the general second order elliptic equations

V. Zh. Dumanyan

Chair of Numerical Analysis and Mathematical Modeling YSU, Armenia

Abstract: We consider the Dirichlet problem in a bounded domain $Q\subset R_n$ $\partial Q\in C^1$, for the second order linear elliptic equation
$$-\sum_{i,j=1}^n(a_{ij}(x)U_{x_i})_{x_j}+\sum_{i=1}^nb_i(x)u_{x_i}-\sum_{i=1^n}c_i(x)u)_{x_i}+d(x)u=f(x)-divF(x), \ x\in Q, \ u|_{\partial Q}=u_0.$$
For the solution we prove boundedness of the Dirichlet integral with the weight $r(x)$, i.e. the function $r(x)| \nabla u(x)|^2$ is integrable over $Q$ , where $r(x) $ is the distance from a point $x\in Q$ to the boundary $\partial Q$.

Keywords: Dirichlet problem, elliptic equation, Dirichlet's integral.

Received: 27.02.2009
Accepted: 31.03.2009

Language: English



© Steklov Math. Inst. of RAS, 2026